
AMS 274: Generalized Linear Models

Fall 2018

1. Definitions

Exponential dispersion family of distributions
Central to the development of generalized linear models (GLMs) is the exponential dispersion
family of distributions as it defines the random component for a GLM, and extends (normal) linear
models, since it includes the normal distribution as a special case.

Consider a (univariate) random variable Y that takes values in a set S that can be countable or
uncountable, that is, Y can be discrete or continuous. We say that the distribution of Y belongs to
the exponential dispersion family of distributions if its probability density/mass function has the
form

f(y | θ, φ) = exp

(
yθ − b(θ)
a(φ)

+ c(y, φ)

)
, (1)

where the parameter θ takes values in a subset of R, the dispersion parameter φ takes values in a
subset of R+, the support S of the distribution does not depend on the parameters θ and φ, and
a(·), b(·), and c(·, ·) are specified functions of φ, θ, and (y, φ), respectively. For specific choices of
a(φ) (> 0) and b(θ), c(y, φ) is a normalizing function that ensures that (1) defines a valid density
or mass function. The exponential dispersion family includes the Binomial (for known number of
trials) and Poisson distributions (a(φ) = 1 for both) as well as the normal, gamma, and inverse
Gaussian distributions.

Note that for φ known, (1) is a special case of the one-parameter exponential family of distri-
butions (with natural parameter θ). It may or may not be a two-parameter exponential family
when both θ and φ are unknown (it depends on the actual form of c(y, φ)). The term exponential
dispersion family reflects this partly exponential form of (1) as well as the important role played
by the dispersion parameter φ. The exponential dispersion family allows more flexibility than the
one-parameter exponential family through dispersion parameter φ. At the same time, its form is
more convenient for estimation than the two-parameter exponential family.

Using standard results for expectations of derivatives of log-likelihood functions (see the Ap-
pendix), we obtain

E(Y | θ, φ) = b′(θ)

and
Var(Y | θ, φ) = a(φ)b′′(θ). (2)

(Here, b′(θ) = db(θ)/dθ and b′′(θ) = d2b(θ)/dθ2.) Note the specific mean-variance relationship,
Var(Y ) = a(φ)dE(Y )/dθ, implied by the exponential dispersion family. This relationship, along
with the inability of the family to model moments of order higher than 2, indicate some of the
implicit restrictions for standard GLMs. The function a(φ) is typically of the form a(φ) = φ or
a(φ) = φ/w, where w is a known weight that depends on the observation, clarifying further, through
expression (2), the role of φ as a dispersion parameter.
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The function b′′(θ) is typically referred to as the variance function of the family, and written as
V (µ) to emphasize the mean-variance relationship Var(Y ) = a(φ)b′′(θ) = a(φ)V (µ). It can be shown
that it characterizes the member of the exponential dispersion family. The fact that the normal
distribution has a variance function that does not depend on its mean (specifically, b′′(θ) = 1 for the
normal distribution) emphasizes its distinguishing role within the class of exponential dispersion
models, allowing the formulation of the standard normal linear model with constant variance.

For a systematic treatment of exponential dispersion models, including multivariate generaliza-
tions of (1), see Jørgensen (1987).

GLM structure
For the definition of the standard class of GLMs (Nelder and Wedderburn, 1972), we consider the
following three components for the model structure.
1. Random component: The response observations yi, i = 1, ..., n, are assumed to be realiza-
tions of random variables Yi that are independent and follow a distribution that is a member of
the exponential dispersion family with common dispersion parameter φ. That is,

Yi
ind.∼ f(yi | θi, φ) = exp

(
yiθi − b(θi)
ai(φ)

+ c(yi, φ)

)
, i = 1, ..., n, (3)

with means µi = E(Yi | θi, φ) = b′(θi) and variances Var(Yi | θi, φ) = ai(φ)b′′(θi) = ai(φ)V (µi).
2. Systematic component: This is the linear predictor, familiar from normal linear regression
modeling. Let xi = (xi1, ..., xip)

T denote the values, associated with yi, from a p × 1 vector of
(known) explanatory variables (either continuous or categorical). The n × p design matrix X =
(xT1 , ...,x

T
n )T collects the values from all explanatory variables for all observations. Denoting by

β = (β1, ..., βp)
T the vector of regression coefficients, the linear predictor is

ηi = xTi β =

p∑
j=1

xijβj , i = 1, ..., n.

3. Link function: The link function g is a transformation of the mean that addresses problems of
scaling, since the mean of the exponential dispersion family does not necessarily take values in R.
The link function specifies the relationship between the mean of the ith response and the associated
linear predictor and hence connects (links) the random and systematic components of the model,

g(µi) = ηi = xTi β, i = 1, ..., n. (4)

In the definition of standard GLMs, g is assumed to be a monotonic and differentiable function (an
invertible g facilitates interpretation and maximum likelihood fitting for GLMs). It is typically a
specified function, although link functions that depend on a number of parameters (which can be
estimated from the data) have been studied in the literature. Nonparametric modeling, including
Bayesian nonparametric approaches, for the link function has also been studied.

Note from (4) that µi = g−1(xTi β), that is, a linear regression for the means on a transformed
scale given through the link function. An expression for the θi in terms of the xTi β also emerges
noting that µi = b′(θi). In fact, the canonical link is given by g(µi) = θi(µi), under which θi =
xTi β.
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2. Least squares methods for linear and non-linear regression

Linear regression
Consider the familiar form of the linear regression model

yi = xTi β + ei, i = 1, ..., n, (5)

or y = Xβ + e in matrix-vector notation, where y = (y1, ..., yn)T and e = (e1, ..., en)T .
Point estimation for the regression coefficients is possible with assumptions only for the first two

moments of the response distribution. Under the standard assumptions, E(e) = 0 and Var(e) =
σ2In, the least squares (LS) estimates β̂LS arise by minimizing the function

∑n
i=1(yi − xTi β)2 =

(y −Xβ)T (y −Xβ), yielding β̂LS = (XTX)−1XTy (provided X is of full rank).
Under the more general assumption Var(e) = σ2Σ, where Σ is a known n×n matrix, minimiza-

tion of the function (y−Xβ)TΣ−1(y−Xβ) yields the generalized least squares estimates β̂GLS =
(XTΣ−1X)−1XTΣ−1y (provided all required matrix inverses exist).

Introduction of the matrix Σ allows for correlated errors and different error variances. The
special case Σ = diag(w−11 , ..., w−1n ), where wi are known weights, leads to the weighted least
squares (WLS) estimates through minimization of the function

∑n
i=1wi(yi − xTi β)2. Here, al-

though the familiar assumption of uncorrelated errors is retained, observations with large weight
(i.e., small variance) contribute more to the function that is minimized. Note that, defining C =
diag(

√
w1, ...,

√
wn), the linear model y = Xβ + e, with Var(e) = σ2diag(w−11 , ..., w−1n ), can be

transformed to the linear model Cy = CXβ + Ce, where Var(Ce) = σ2In. Hence, the WLS
estimates can be obtained using the LS method for the transformed model.

Note that in the estimation approaches discussed above the assumptions for the response dis-
tribution involve only its first two moments. Hence, any inference other than point estimation is
essentially not possible. For further inference (e.g., interval estimation or hypothesis testing) one
has to resort to asymptotic results or perhaps bootstrap methods.

Model (5) can be fully parameterized by specifying a (parametric) response distribution. It is
well known that with a normal response distribution (i.e., e ∼ N(0, σ2In)) the maximum likelihood
estimates for β are the same with the LS estimates β̂LS . In a similar fashion, other optimization
methods can be justified as maximum likelihood approaches under specific response distributions.

Non-linear regression
In certain applications, we may anticipate a non-linear relationship between the response and the
explanatory variables. Denoting by h(x,β) a generic (non-linear) regression function defined in
terms of the vector β of regression coefficients, the natural extension of model (5) is

yi = h(xi,β) + ei, i = 1, ..., n. (6)

The errors are typically assumed uncorrelated, possibly with different variances, e.g., Var(ei) =
σ2/wi, for known weights wi. Again, a likelihood approach to estimation can be taken if a specific
parametric response distribution is employed.

To proceed with assumptions only for the first two moments, an extension of the WLS technique
provides a possible approach to estimation for β. The estimates of β will now minimize the function

I(β) =
n∑
i=1

(Var(Yi))
−1(yi − h(xi,β))2 (7)
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which is similar to the one used in the LS or WLS approach when the Var(Yi) are constant or of
the form σ2/wi, respectively. However, here the non-linearity of the regression function introduces
complications. Note that, in general, Var(Yi) can depend on β adding to the complexity of the
estimation procedure. In what follows, we assume that Var(Yi) is not a function of β.

The estimates β̂ of β, arising from the minimization of (7), must satisfy the system of equations
(typically called the normal equations)

∂I(β)

∂βj
=

n∑
i=1

(Var(Yi))
−1(yi − h(xi, β̂))

[
∂h(xi,β)

∂βj

]
β=β̂

= 0, j = 1, ..., p.

The term ∂h(xi,β)/∂βj shows that the normal equations are, in general, non-linear due to the
non-linearity of h (note that ∂h(xi,β)/∂βj = xij , free of β, for the linear regression model).

To address the lack of closed form solutions, numerical (iterative) methods can be used. Iterative
weighted least squares (IWLS) is one such method that utilizes an approximate linearization of
h and applies WLS in an iterative fashion. Specifically to implement the IWLS technique:

(i) Start with initial values β0 = (β01 , ..., β
0
p).

(ii) Approximate h with a linear form (linear in the βj). For example, a first-order Taylor se-
ries expansion of h(xi,β) about β0 yields

h(xi,β) ≈ h∗(xi,β) = h(xi,β
0) +

p∑
j=1

[
∂h(xi,β)

∂βj

]
β=β0

(βj − β0j ). (8)

If we use h∗(xi,β) from (8) to approximate h(xi,β), the non-linear regression model (6) is approx-
imated by the linear regression model

u0i =

p∑
j=1

z0ijδ
0
j + ei, i = 1, ..., n, (9)

with transformed responses u0i = yi− h(xi,β
0), explanatory variables z0ij = (∂h(xi,β)/∂βj)β=β0 ,

and regression coefficients δ0j = βj −β0j . Note that the values of both the response and explanatory

variables in (9) depend on the initial values β0.

(iii) Solve the linear system that results from (9) to obtain an estimate δ̂
0

= (δ̂01 , ..., δ̂
0
p) of δ0 =

(δ01 , ..., δ
0
p). The estimate is obtained by minimizing (using either LS or WLS)

n∑
i=1

(Var(Yi))
−1

yi − h(xi,β
0)−

p∑
j=1

z0ijδ
0
j

2

(10)

with respect to the δ0j , j = 1, ..., p. For example, under the assumption Var(ei) = σ2 in (6) and

denoting by Z0 the n × p matrix defined by the z0ij and u0 = (u01, ..., u
0
n)T , the estimate δ̂

0
=

(Z0TZ0)−1Z0Tu0 (provided Z0 is of full rank). Note the difference between expressions (7) and
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(10). The former involves the non-linear regression function h and its solution would yield the
actual WLS estimates of β. However, we work with the latter that provides approximate (revised)
estimates for β.

(iv) Since δ0 = β − β0, we can write δ̂
0

= β1 −β0 setting β1 = β0 + δ̂ as the current (re-
vised) estimate of β.

Steps (ii) to (iv) are repeated until the resulting sequence
{
βk
}

converges. Assuming, again,
Var(ei) = σ2 and in obvious extension of the previous notation, the iteration of the IWLS algo-
rithm can be expressed as

βk+1 = βk + (ZkTZk)−1ZkTuk.

Note that both uk and Zk depend on the current estimate βk clarifying the iterative nature of the
IWLS approach.

Convergence can be slow, or might not be obtained, depending on the form of h and the initial
values. Under conditions on h and for certain response distributions, IWLS estimates approximate
the associated maximum likelihood estimates; see, e.g., Charnes, Frome and Yu (1976) for a re-
sult involving the one-parameter exponential family of distributions. Refer to Draper and Smith
(1981) for more details as well as discussion of other numerical estimation methods for non-linear
regression models.

3. Newton-Raphson and scoring methods for numerical
maximization

Let t(θ) be a real-valued function that we wish to maximize with respect to θ. If there is no closed
form solution to the problem, numerical (iterative) approaches emerge as useful options. Of course,
this is a numerical analysis problem, the important statistical application being to maximum like-
lihood estimation where t(θ) = l(θ;y) = logL(θ;y) = log

∏n
i=1 f(yi | θ), the log-likelihood function

for θ based on the observed data y = (y1, ..., yn). Assume first that θ is one dimensional.

The Newton-Raphson algorithm (or Newton’s method) is an iterative approach that em-
ploys a quadratic Taylor series approximation of t(θ). Specifically, for a starting value θ0, t(θ) is
approximated by a second-order Taylor series expansion about θ0,

t(θ) ≈ t∗(θ) = t(θ0) + t′(θ0)(θ − θ0) + 0.5t′′(θ0)(θ − θ0)2,

where t′(θ0) = (dt(θ)/dθ)θ=θ0 and t′′(θ0) = (d2t(θ)/dθ2)θ=θ0 . Next, the new iterate θ1 is determined
from dt∗(θ)/dθ = 0, hence

θ1 = θ0 − t′(θ0)

t′′(θ0)
, (11)

and the procedure is repeated until convergence.

In the context of maximum likelihood estimation, t′(θ) = ∂l(θ;y)/∂θ = U(θ;y), the score function,
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and t′′(θ) = ∂2l(θ;y)/∂θ2 = ∂U(θ;y)/∂θ ≡ U ′(θ;y) and the iteration of the Newton-Raphson
algorithm becomes

θk+1 = θk − U(θk;y)

U ′(θk;y)
.

The scoring method (or Fisher’s scoring method) is a variant of the Newton-Raphson method
that replaces U ′(θ;y) with E(U ′(θ;Y )), where the expectation is taken with respect to the distri-
bution of Y = (Y1, ..., Yn). Recall that, under regularity conditions, we have E(−U ′) = Var(U) =
J(θ), the (expected) Fisher information. Hence the iteration of the scoring method is given by

θk+1 = θk +
U(θk;y)

J(θk)
.

Note that, under regularity conditions on the underlying distribution with density/mass function
f(· | θ), the maximum likelihood estimate θ̂ of θ is asymptotically normal with variance inversely
related to J(θ), Var(θ̂) ≈ 1/J(θ). The curvature of l(θ;y) for θ ∈ (θ̂−ε, θ̂+ε) specifies the precision
of θ̂ and this curvature depends on the rate of change of ∂l(θ;y)/∂θ = U(θ;y), i.e., on U ′(θ;y) and
hence also on E(U ′(θ;y)). A flat log-likelihood l(θ;y) implies an imprecise estimate θ̂ and this, in

turn, relates to a large standard error

√
Var(θ̂).

Turning to a multiparameter setting, θ = (θ1, ..., θm), both approaches can be extended, using
second-order Taylor series expansion for the real-valued function t(θ), which now has a mul-
tidimensional argument, and replacing the first-order derivative t′(θ) with the vector t′(θ) =
(∂t(θ)/∂θ1, ..., ∂t(θ)/∂θm)T and the second-order derivative t′′(θ) with the m × m matrix t′′(θ)
with elements ∂2t(θ)/∂θi∂θj , for i, j = 1, ...,m. The analogous expression to (11) is

θ1 = θ0 −
(
t′′(θ0)

)−1
t′(θ0).

For maximum likelihood estimation, t(θ) = l(θ;y), (∂l(θ;y)/∂θ1, ..., ∂l(θ;y)/∂θm)T = U(θ;y) is
the score function vector and the m×m matrix I(θ;y) with elements −∂2l(θ;y)/∂θi∂θj , for i, j =
1, ...,m, is the observed (Fisher) information matrix. The Newton-Rapshon method uses the
observed Fisher information matrix whereas the scoring method is based on the expected (Fisher)
information matrix J(θ) with elements E(−∂2l(θ;Y )/∂θi∂θj), for i, j = 1, ...,m. Hence the
iteration for the Newton-Raphson algorithm is given by

θk+1 = θk +
(
I(θk;y)

)−1
U(θk;y)

and for the scoring method

θk+1 = θk +
(
J(θk)

)−1
U(θk;y).

From a practical point of view, the choice of the method depends on whether obtaining the ex-
pected information matrix (or number) is feasible. In complex multiparameter models, the required
expectations are typically not available in closed form and, therefore, the Newton-Raphson method
is simpler to implement. Note that for the exponential dispersion family (1) (common θ and φ for

AMS 274 – Generalized Linear Models 6 Athanasios Kottas, October 1, 2018



all yi) we have U ′ = E(U ′). Moreover, to estimate the regression coefficients in a GLM, the scoring
method actually results, in general, to simplifications compared to the Newton-Raphson method.

Finally, we note that use of the expected versus observed information matrix has been studied
in the literature with emphasis on the resulting theoretical properties of estimates; see, e.g., Efron
and Hinkley (1978).

4. Maximum likelihood estimation for GLMs

Consider the GLM setting described in Section 1. The objective is to obtain maximum likelihood
estimates β̂ for β = (β1, ..., βp)

T , which, based on the invariance of maximum likelihood estimation,

will also yield maximum likelihood estimates η̂i = xTi β̂ for the linear predictors, and µ̂i = g−1(xTi β̂)
for the means. The approach will be based on the scoring method, since, in this context, use of the
expected information matrix provides simplified expressions compared to the observed information
matrix. We can also express the iterative approach as an IWLS algorithm.

For the scoring method, we need the score function vector U(β;y) = (U1(β;y), ..., Up(β;y))T ,
where Uj(β;y) = ∂l(β;y)/∂βj , for j = 1, ..., p, and the expected information matrix J(β) with
elements E(−∂2l(β;Y )/∂βk∂βj), for k, j = 1, ..., p.

Based on (3), the log-likelihood function for β is given by

l(β;y) =
n∑
i=1

log f(yi | θi, φ) =
n∑
i=1

(
yiθi − b(θi)
ai(φ)

+ c(yi, φ)

)
=

n∑
i=1

li,

where li ≡ li(β; yi) is the contribution to the log-likelihood from the ith observation, depending on
β through the θi (recall that b′(θi) = g−1(xTi β)).

Hence the score function vector has elements

Uj(β;y) =
n∑
i=1

∂li
βj

=

n∑
i=1

∂li
∂θi

dθi
dµi

dµi
dηi

∂ηi
∂βj

(12)

using the chain rule for differentiation. Now, for each of the derivatives in (12) we have

∂li
∂θi

=
yi − b′(θi)
ai(φ)

=
yi − µi
ai(φ)

dθi
dµi

=

(
dµi
dθi

)−1
=

(
db′(θi)

dθi

)−1
=

1

b′′(θi)
=

1

V (µi)

dµi
dηi

=
dg−1(ηi)

dηi
,

with a form that depends on the link function g, and

∂ηi
∂βj

=
∂

βj

p∑
`=1

xi`β` = xij .
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Substituting the above expressions in (12), we obtain

Uj(β;y) =

n∑
i=1

yi − µi
ai(φ)V (µi)

dµi
dηi

xij . (13)

Regarding the expected Fisher information matrix, we have

∂2l(β;y)

∂βk∂βj
=
∂Uj(β;y)

∂βk
=

∂

∂βk

n∑
i=1

yi − µi
ai(φ)V (µi)

dµi
dηi

xij ,

using (13), which results in

∂2l(β;y)

∂βk∂βj
=

n∑
i=1

xij

[
dµi
dηi

∂

∂βk

(
yi − µi

ai(φ)V (µi)

)
+

yi − µi
ai(φ)V (µi)

∂

∂βk

(
dµi
dηi

)]
. (14)

Therefore, the (k, j)th element of the expected information matrix J(β) is given by

(J(β))k,j = E

(
−∂

2l(β;y)

∂βk∂βj

)
= E

[
−

n∑
i=1

xij
dµi
dηi

∂

∂βk

(
Yi − µi

ai(φ)V (µi)

)]
, (15)

since the second term in (14) cancels on taking expectations. Expressions (14) and (15) illustrate
the fact that the method of scoring results in simplifications compared to the Newton-Raphson
method. Moreover,

∂

∂βk

(
yi − µi

ai(φ)V (µi)

)
=

∂

∂µi

(
yi − µi

ai(φ)V (µi)

)
dµi
dηi

∂ηi
∂βk

=

{
− 1

ai(φ)V (µi)
− (yi − µi)dV (µi)/dµi

ai(φ)V 2(µi)

}
dµi
dηi

xik

which, taking the expectation, yields

E

{
∂

∂βk

(
Yi − µi

ai(φ)V (µi)

)}
= − 1

ai(φ)V (µi)

dµi
dηi

xik.

Therefore, substituting in (15), we obtain

(J(β))k,j =
n∑
i=1

xijxik
ai(φ)V (µi)

(
dµi
dηi

)2

. (16)

Letting β̃
k

= (β̃k1 , ..., β̃
k
p )T be the vector of estimates at the kth iteration of the algorithm, the

iteration of the scoring method to approximate the maximum likelihood estimates of β is given by

β̃
k+1

= β̃
k

+
(
J(β̃

k
)
)−1

U(β̃
k
;y), (17)

where, as the notation indicates, the expected information matrix and the score function vector

are evaluated at β = β̃
k
. Note that, for certain problems, the inverse of J(β) might not exist, in

which case, generalized inverses can be employed.
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To illustrate the equivalence of the scoring method with an IWLS method, using (17) we obtain

J(β̃
k
)β̃

k+1
= J(β̃

k
)β̃

k
+ U(β̃

k
;y). (18)

Moreover, using (13) and (16), we can write

J(β) = XTW (β)X

J(β)β + U(β;y) = XTW (β)z(β),
(19)

where X is the design matrix, W (β) is an n× n diagonal matrix with elements

wii(β) =
1

ai(φ)V (µi)

(
dµi
dηi

)2

, i = 1, ..., n

and z(β) is an n-dimensional vector with elements

zi(β) = (yi − µi)
dηi
dµi

+

p∑
`=1

xi`β`, i = 1, ..., n.

Hence, using (19), expression (18), that defines the iteration for the scoring method, can be written
as (

XTW (β̃
k
)X
)
β̃
k+1

= XTW (β̃
k
)z(β̃

k
). (20)

Expression (20) defines iterations for an IWLS algorithm with weights wii and (transformed) re-
sponses zi, i = 1, ..., n. The approach is iterative, since, in general, both the wii and the zi depend
on β.
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Appendix: Expectations for derivatives of log-likelihoods

In order to obtain the mean and variance of a random variable with a distribution that is a
member of the exponential dispersion family (or the one-parameter exponential family), we need
the following results:

E

(
∂`

∂θ

)
= 0 (21)

E

(
∂2`

∂θ2

)
+ E

((
∂`

∂θ

)2
)

= 0. (22)

Here ` ≡ `(θ; y) = log f(y | θ) is the log-likelihood of θ based on one realization y from some
distribution (not necessarily from the exponential family) with density/mass function f(y | θ). For
simplicity, we assume that θ is one dimensional taking values in R (or some subset of R).

Establishing (21) and (22) requires certain regularity conditions for f(y | θ), which allow revers-
ing the order of integration and differentiation as needed below in (23) and (24) (see, e.g., Casella
and Berger (1990), Statistical Inference, pp. 68-76). For example, distributions with support that
depends on the parameter(s) create difficulties with respect to these conditions. However, they are
satisfied by the exponential dispersion family.

Assume, without loss of generality, that Y is continuous. (We only need to replace integrals
with sums in the expressions below if Y is discrete.) To verify (21), differentiate, with respect to
θ, both sides of

∫
f(y | θ)dy = 1 to obtain

∂

∂θ

∫
f(y | θ)dy = 0

⇒
∫
∂f(y | θ)

∂θ
dy = 0 (23)

⇒
∫

∂`

∂θ
f(y | θ)dy = 0

⇒ E

(
∂`

∂θ

)
= 0.

For (22), note that

∂2`

∂θ2
=

∂

∂θ
((f(y | θ))−1∂f(y | θ)

∂θ
) = ((f(y | θ))−1∂

2f(y | θ)
∂θ2

)− ((f(y | θ))−1∂f(y | θ)
∂θ

)2.

Hence

E

(
∂2`

∂θ2

)
+ E

(
(
∂`

∂θ
)2
)

= E

(
(f(y | θ))−1∂

2f(y | θ)
∂θ2

)
=

∫
∂2f(y | θ)

∂θ2
dy

=
∂2

∂θ2

∫
f(y | θ)dy (24)

= 0.
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